Answer
$ y=-17$ is the minimum, when $ x=-2$
Work Step by Step
Given $$ y=3x^{2}+12 x -5 $$
So, we have
\begin{aligned} y&=3x^{2}+12 x -5 \\
&=3\left(x^{2}+4 x\right)-5\\
& =3\left(x^{2}+4 x+4-4\right)-5\\
& =3\left(x^{2}+4 x+4\right)-5-12\\
& =3\left(x+2\right)^{2}-17\\
\end{aligned}
The lowest value for the squared term is $0$. So, we see that $ y=-17$ is the minimum, when $ x=-2$.