Answer
$ y=-7$ is the minimum, when $ x=-3$
Work Step by Step
Given $$ y= x^{2}+6 x+2 $$
So, we have
\begin{aligned} y&= x^{2}+6 x+2 \\
&= x^{2}+6 x+2+7-7 \\
&= x^{2}+6 x+9-7 \\
&=( x^{2}+6 x+9)-7 \\
&=( x+3)(x+3)-7 \\
&=( x+3)^2-7 \\
\end{aligned}
The lowest value for the squared term is $0$. So, we see that $ y=-7$ is the minimum, when $ x=-3$.