Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.2 Linear and Quadratic Functions - Exercises - Page 19: 58

Answer

The quadratic formula is $x=\dfrac{-b\pm \sqrt{b^2-4bc}}{2a}$, which can be derived as shown below.

Work Step by Step

The given quadratic equation $ax^2+bx+c=0$ can give quadratic formula as follows: Step 1: Divide throughout by $a$. $\Rightarrow x^2+\dfrac{b}{a}x+\dfrac{c}{a}=0$ Step 2: Add as well as subtract $\left(\dfrac{\text{Coefficient of x}}{2}\right)^2=\left(\dfrac{\frac{b}{a}}{2}\right)^2=\left(\dfrac{b}{2a}\right)^2$. $\Rightarrow x^2+\dfrac{b}{a}x+\left(\dfrac{b}{2a}\right)^2-\left(\dfrac{b}{2a}\right)^2 +\dfrac{c}{a}=0$ Step 3: Multiply and divide the term with $x$ by 2. $\Rightarrow x^2+2\cdot\dfrac{b}{2a}\cdot x+\left(\dfrac{b}{2a}\right)^2-\left(\dfrac{b}{2a}\right)^2 +\dfrac{c}{a}=0$ Step 4: Compress the perfect square as follows: $\left(x+\dfrac{b}{2a}\right)^2-\left(\dfrac{b}{2a}\right)^2 +\dfrac{c}{a}=0$ Step 5: Now, solve for $x$ as follows: $\Rightarrow \left(x+\dfrac{b}{2a}\right)^2-\dfrac{b^2}{4a^2} +\dfrac{c}{a}=0$ $\Rightarrow\left(x+\dfrac{b}{2a}\right)^2=\dfrac{b^2}{4a^2} -\dfrac{c}{a}$ $\Rightarrow\left(x+\dfrac{b}{2a}\right)^2=\dfrac{b^2-4ac}{4a^2}$ $\Rightarrow x+\dfrac{b}{2a}=\pm\dfrac{\sqrt{b^2-4ac}}{2a}$ $\Rightarrow x= -\dfrac{b}{2a}\pm\dfrac{\sqrt{b^2-4ac}}{2a}$ $\Rightarrow x= \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$, which is the required quadratic formula.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.