Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.4 Trigonometric Functions - Exercises - Page 31: 43

Answer

$$ \theta=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \pi, \frac{6 \pi}{5}, \frac{8 \pi}{5} $$

Work Step by Step

Since $$\sin \alpha=-\sin \beta$$ when $\alpha=-\beta+2 \pi k$ or $\alpha=\pi+\beta+2 \pi k .$ Substituting $\alpha=2 \theta$ and $\beta=3 \theta,$ we have either $$2 \theta=-3 \theta+2 \pi k$$ or $$2 \theta=\pi+3 \theta+2 \pi k .$$ Solving each of these equations for $\theta$ yields $\theta=\frac{2}{5} \pi k$ or $\theta=-\pi-2 \pi k$. The solutions on the interval $0 \leq \theta<2 \pi$ are then $$ \theta=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \pi, \frac{6 \pi}{5}, \frac{8 \pi}{5} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.