Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.4 Trigonometric Functions - Exercises - Page 31: 56

Answer

$$\cos^2 x\sin^2 x = \frac{1-\cos 4 x}{8}$$

Work Step by Step

We use the know identities to obtain: \begin{align*} \cos^2 x\sin^2 x&= \left(\cos x\sin x\right)^2\\ &= \left( \frac{\sin2 x}{2}\right)^2\\ &=\frac{\sin^22x}{4},\\ & \text{Use: } \sin^2 x=\frac{1}{2}[1-\cos 2x] \\ &= \frac{1-\cos 4 x}{8} \\ \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.