Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.4 Trigonometric Functions - Exercises - Page 31: 45

Answer

$$ \theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6} $$

Work Step by Step

Since $$\cos \alpha=-\cos \beta$$ when $\alpha+\beta=\pi+2 \pi k$ or $\alpha=\beta+\pi+2 \pi k .$ Substituting $\alpha=4 \theta$ and $\beta=2 \theta,$ we have either $$6 \theta=\pi+2 \pi k$$ or $$4 \theta=2 \theta+\pi+2 \pi k .$$ Solving each of these equations for $\theta$ yields $$\theta=\frac{\pi}{6}+\frac{\pi}{3} k$$ or $$\theta=\frac{\pi}{2}+\pi k$$ The solutions on the interval $0 \leq \theta<2 \pi$ are then $$ \theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.