Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.4 Trigonometric Functions - Exercises - Page 31: 61

Answer

$$\cos 3 \theta =4 \cos ^{3} \theta-3 \cos \theta$$

Work Step by Step

We use the know identities to obtain: \begin{aligned} \cos 3 \theta &=\cos (2 \theta+\theta)\\ &=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta\\ &=\left(2 \cos ^{2} \theta-1\right) \cos \theta-(2 \sin \theta \cos \theta) \sin \theta \\ &=\cos \theta\left(2 \cos ^{2} \theta-1-2 \sin ^{2} \theta\right)\\ &=\cos \theta\left(2 \cos ^{2} \theta-1-2\left(1-\cos ^{2} \theta\right)\right) \\ &=\cos \theta\left(2 \cos ^{2} \theta-1-2+2 \cos ^{2} \theta\right)\\ &=4 \cos ^{3} \theta-3 \cos \theta \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.