Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 55: 48

Answer

\begin{align*} \lim _{x \rightarrow -1^{-}} f(x)&=-\infty \\ \lim _{x \rightarrow -1^{+}} f(x)&=\infty \\ \lim _{x \rightarrow -1} f(x)&= does~not~exist \\ \lim _{x \rightarrow 3^{-}} f(x)&= +\infty\\ \lim _{x \rightarrow 3^{+}} f(x)&= +\infty\\ \lim _{x \rightarrow 3^{}} f(x)&= +\infty\\ \lim _{x \rightarrow 5^{-}} f(x)&= -\infty\\ \lim _{x \rightarrow 5^{+}} f(x)&= -\infty\\ \lim _{x \rightarrow 5^{}} f(x)&=-\infty\\ \end{align*}

Work Step by Step

We find the limits by observing the figure. For the overall limit to exist, the left and right limits must equal each other. Thus, we have: \begin{align*} \lim _{x \rightarrow -1^{-}} f(x)&=-\infty \\ \lim _{x \rightarrow -1^{+}} f(x)&=\infty \\ \lim _{x \rightarrow -1} f(x)&= does~not~exist \\ \lim _{x \rightarrow 3^{-}} f(x)&= +\infty\\ \lim _{x \rightarrow 3^{+}} f(x)&= +\infty\\ \lim _{x \rightarrow 3^{}} f(x)&= +\infty\\ \lim _{x \rightarrow 5^{-}} f(x)&= -\infty\\ \lim _{x \rightarrow 5^{+}} f(x)&= -\infty\\ \lim _{x \rightarrow 5^{}} f(x)&=-\infty\\ \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.