Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 55: 53

Answer

$$\begin{align*} \lim _{x \rightarrow 1^-} f(x) =3 \\ \lim _{x \rightarrow 1^+} f(x) =3\\ \lim _{x \rightarrow 3^-} f(x) =-\infty \\ \lim _{x \rightarrow 3^+} f(x) =4\\ \lim _{x \rightarrow 5-} f(x) =2 \\ \lim _{x \rightarrow 5+} f(x) =-3 \\ \lim _{x \rightarrow 6-} f(x) =\infty\\ \lim _{x \rightarrow 6+} f(x) =\infty \end{align*}$$

Work Step by Step

We observe the left and right limits at the points $c=1,3,5,6$ by looking at the given graph: \begin{align*} \lim _{x \rightarrow 1^-} f(x)&=3\\ \lim _{x \rightarrow 1^+} f(x)&=3\\ \lim _{x \rightarrow 3^-} f(x)&=-\infty \\ \lim _{x \rightarrow 3^-} f(x)&=4\\ \lim _{x \rightarrow 5-} f(x)&=2 \\ \lim _{x \rightarrow 5+} f(x)&=-3 \\ \lim _{x \rightarrow 6-} f(x)&=\infty\\ \lim _{x \rightarrow 6+} f(x)&=\infty \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.