Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 55: 59

Answer

$$-12 $$

Work Step by Step

Given $$\lim _{\theta \rightarrow 0} \frac{\cos 7 \theta-\cos 5 \theta}{\theta^{2}}$$ Consider $$ f(\theta)= \frac{\cos 7 \theta-\cos 5 \theta}{\theta^{2}}$$ From the following figure, we can observe that \begin{align*} \lim _{\theta\rightarrow 0^+} f( \theta)&= -12\\ \lim _{\theta \rightarrow 0^-} f( \theta)&= -12 \end{align*} Then $$\lim _{\theta \rightarrow 0} \frac{\cos 7 \theta-\cos 5 \theta}{\theta^{2}}=-12 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.