Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 55: 60

Answer

$$5.333 $$

Work Step by Step

Given $$\lim _{\theta \rightarrow 0} \frac{\sin ^{2} 2 \theta-\theta \sin 4 \theta}{\theta^{4}}$$ Consider $$ f(\theta)= \frac{\sin ^{2} 2 \theta-\theta \sin 4 \theta}{\theta^{4}}$$ From the following figure, we can observe that \begin{align*} \lim _{\theta\rightarrow 0^+} f( \theta)&= 5.333\\ \lim _{\theta \rightarrow 0^-} f( \theta)&= 5.333 \end{align*} Then $$\lim _{\theta \rightarrow 0} \frac{\sin ^{2} 2 \theta-\theta \sin 4 \theta}{\theta^{4}}=5.333 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.