Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.1 Four Ways to Represent a Function - 1.1 Exercises - Page 21: 25

Answer

$f(2)=12$ $f(-2)=16$ $f(a)=3a^{2}-a+2$ $f(-a)=3a^{2}+a+2$ $f(a+1)=3a^{2}+5a+4$ $2f(a)=6a^{2}-2a+4$ $f(2a)=12a^{2}-2a+2$ $f(a^{2})=3a^{4}-a^{2}+2$ $[f(a)]^{2}=9a^4-6a^3+13a^2-4a+4$ $f(a+h)=3a^2+6ah+3h^2-a-h+2$

Work Step by Step

$$\bf f(x)=3x^{2}-x+2$$ Replace $x$ with the given values to obtain the corresponding values of $f$. $f(2)=3(2)^{2}-2+2=3(4)=\bf12$ $f(-2)=3(-2)^{2}+2+2=3(4) +4 =\bf16$ $f(a)=\bf3a^{2}-a+2$ $f(-a)=3(-a)^{2}-(-a)+2=\bf3a^{2}+a+2$ $f(a+1)=3(a+1)^{2}-(a+1)+2$ $=3(a^{2}+2a+1)-a-1+2$ $=\bf3a^{2}+5a+4$ $2f(a)=2(3a^{2}-a+2) = \bf6a^{2}-2a+4$ $f(2a)=3(2a)^{2}-(2a)+2$ $=3(4a^2)-2a+2$ $=\bf12a^{2}-2a+2$ $f(a^{2})=3(a^2)^{2}-(a^2)+2$ $=\bf3a^{4}-a^{2}+2$ $[f(a)]^{2}=(3a^{2}-a+2)^{2}$ $=9a^4-3a^3-3a^3+6a^2+a^2+6a^2-2a-2a+4$ $=\bf9a^4-6a^3+13a^2-4a+4$ $f(a+h)=3(a+h)^{2}-(a+h)+2$ $=3(a^2+2ah+h^2)-a-h+2$ $=\bf3a^2+6ah+3h^2-a-h+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.