Answer
2
Work Step by Step
Theorem 3 - Squeeze Theorem
If $f(x) \leq g(x) \leq h(x)$ when $x$ is near $a$ (except possibly at a)
and $\displaystyle \lim_{x\rightarrow a}f(x)=\lim_{x\rightarrow a}h(x)=L$, then$\quad \displaystyle \lim_{x\rightarrow a}g(x)=L$
--------------
Our $g(x)$ is "squeezed" between$ u(x)=2x $ and $v(x)=x^{4}-x^{2}+2$
$u(x) \leq g(x) \leq v(x)$, for all x..
$\displaystyle \lim_{x\rightarrow 1}u(x)= \displaystyle \lim_{x\rightarrow 1}(2x)=2(1)=2$
$\displaystyle \lim_{x\rightarrow 1} v(x)=\displaystyle \lim_{x\rightarrow 1}(x^{4}-x^{2}+2)=1^{4}-1^{2}+2=2$.
By the Squeeze Theorem,
$\displaystyle \lim_{x\rightarrow 1}g(x)=2$