Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises - Page 71: 42

Answer

the limit does not exist

Work Step by Step

Theorem 1 $\displaystyle \lim_{x\rightarrow a}f(x)=L$ if and only if $\displaystyle \lim_{x\rightarrow a^{-}}f(x)=L=\lim_{x\rightarrow a^{+}}f(x)$ --------- $|x+6|=\left\{\begin{array}{lll} x+6 & if & x \geq -6\\ -(x+6) & if & x < -6 \end{array}\right.$ Approaching x=-6 from the right, $\displaystyle \lim_{x\rightarrow-6+}\frac{2x+12}{|x+6|}=\lim_{x\rightarrow-6+}\frac{2(x+6)}{x+6}=2$ Approaching x=-6 from the left, $\displaystyle \lim_{x\rightarrow-6^{-}}\frac{2x+12}{|x+6|}=\lim_{x\rightarrow-6^{-}}\frac{2(x+6)}{-(x+6)}=-2$ The left and right limits exist, but are NOT EQUAL, so by Th. 1, $\displaystyle \lim_{x\rightarrow-6}\frac{2x+12}{|x+6|}$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.