Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises - Page 71: 40

Answer

$\lim\limits_{x \to 0^{+}}\sqrt x [1+sin^{2}(2\pi/x)]=0$

Work Step by Step

$\lim\limits_{x \to 0^{+}}\sqrt x [1+sin^{2}(2\pi/x)]$ Lets estimate the function: $-1\leq sin (2\pi/x) \leq 1$ therefore $-1\leq sin^{2}(2\pi/x) \leq 1$ therefore $0\leq 1+ sin^{2}(2\pi/x) \leq 2$ $0\leq \sqrt x[1+ sin^{2}(2\pi/x)] \leq 2\sqrt x$ $\lim\limits_{x \to 0^{+}}2\sqrt x=2\times0=0$ $\lim\limits_{x \to 0^{+}}0=0$ By the Squeeze Theorem $0\leq \sqrt x[1+ sin^{2}(2\pi/x)] \leq 2\sqrt x$ and $\lim\limits_{x \to 0^{+}}2\sqrt x=\lim\limits_{x \to 0^{+}}0=0$ then $\lim\limits_{x \to 0^{+}}\sqrt x [1+sin^{2}(2\pi/x)]=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.