Answer
$\lim\limits_{x \to 0}x^{4}cos \frac{2}{x}=0$
Work Step by Step
$\lim\limits_{x \to 0}x^{4}cos \frac{2}{x}$
$-1\leq cos \frac{2}{x}\leq1$
therefore
$-x^{4}\leq x^{4} cos \frac{2}{x}\leq x^{4} $
and
$\lim\limits_{x \to 0}x^{4}=0$
$\lim\limits_{x \to 0}-x^{4}=0$
Therefore by the squeeze theorem :
$\lim\limits_{x \to 0}x^{4}cos \frac{2}{x}=0$