Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 93: 45

Answer

\[c=\frac{2}{3}\]

Work Step by Step

\[f(x)=\left\{\begin{array}{ll} cx^2+2x\;\; , x<2\\ x^3-cx\;\;\; , x\geq 2 \end{array}\right.\] Clearly $f(x)$ is continuous if $x\neq 2$. We will check the continuity at $r=2$. \[\lim_{x\rightarrow 2^{-}}f(x)=\lim_{x\rightarrow 2}(cx^2+2x)=4c+4\] \[\lim_{x\rightarrow 2^{+}}f(x)=\lim_{x\rightarrow 2}(x^3-cx)=8-2c\] If $f$ is continuous at $x=2$ then: \[\lim_{x\rightarrow 2^{-}}f(x)=\lim_{x\rightarrow 2^{+}}f(x)\] \[\Rightarrow 4c+4=8-2c\Rightarrow 6c=4\Rightarrow c=\frac{2}{3}\] Hence $f$ is continuous on $(-\infty,\infty)$ for $c=\displaystyle\frac{2}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.