Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 93: 46

Answer

\[a=\displaystyle\frac{1}{2}, b=\displaystyle\frac{1}{2}\]

Work Step by Step

\[f(x)=\left\{\begin{array}{ll} \displaystyle\frac{x^2-4}{x-2}\;\;\;\;\;\;\;\;\;\;\;\; , x<2\\\\ ax^2-bx+3\;\;\; , 2\leq x<3\\\\ 2x-a+b\;\;\;\;\;\;, x\geq 3 \end{array}\right.\] Clearly $f(x)$ is continuous if $x\neq 2,3$. We will check the continuity at $x=2$ and $x=3$. \[\lim_{x\rightarrow 2^{-}}f(x)=\lim_{x\rightarrow 2}\left(\frac{x^2-4}{x-2}\right)=\lim_{x\rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)=\lim_{x\rightarrow 2}(x+2)=4\] \[\lim_{x\rightarrow 2^{+}}f(x)=\lim_{x\rightarrow 2}(ax^2-bx+3)=4a-2b+3\] If $f$ is continuous at $x=2$ then: \[\lim_{x\rightarrow 2^{-}}f(x)=\lim_{x\rightarrow 2^{+}}f(x)\] \[\Rightarrow 4=4a-2b+3\Rightarrow 4a-2b=1\;\;\;\;\;\ldots (1)\] \[\lim_{x\rightarrow 3^{-}}f(x)=\lim_{x\rightarrow 3}\left(ax^2-bx+3\right)=9a-3b+3\] \[\lim_{x\rightarrow 3^{+}}f(x)=\lim_{x\rightarrow 3}(2x-a+b)=6-a+b\] If $f$ is continuous at $x=3$ then: \[\lim_{x\rightarrow 3^{-}}f(x)=\lim_{x\rightarrow 3^{+}}f(x)\] \[\Rightarrow 9a-3b+3=6-a+b\Rightarrow 10a-4b=3\;\;\;\;\;\ldots (2)\] Multiply (1) by $-2$: \[-8a+4b=-2\;\;\;\;\;\;\ldots (3)\] Add (2) and (3): \[2a=1\Rightarrow a=\frac{1}{2}\] From equation (2): \[4\left(\frac{1}{2}\right)-2b=1\Rightarrow 2b=1\Rightarrow b=\frac{1}{2}\] Hence $a=\displaystyle\frac{1}{2}$ and $b=\displaystyle\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.