Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 93: 56

Answer

$f(1)\approx0.84$ $f(2)\approx-1.09$ There is a root of the equation $sin~ x − x^2 + x = 0.$ or $sin~ x=x^2 − x$. in the interval $(1, 2)$.

Work Step by Step

Given: $sin~ x=x^2 − x$. The given equation $sin~ x=x^2 − x$ is equivalent to the equation $sin~ x − x^2 + x = 0.$ We can write the equation in function form as $f(x)=sin~ x − x^2 + x$, which is continous on the interval $[1, 2]$, $f(1) =sin~ 1− 1^2 + 1$ $f(1) =sin~ 1− 1 + 1$ $= sin1 − 0 $ $f(1)=sin1$, $f(1)\approx0.84$ and $f(2) =sin~2 -2^2 +2$ $ =sin~2 -4+2$ $=sin~2 -2$ $= 0.034-2$ $f(2)\approx -1.09.$ Since $sin~1<0
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.