Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.3 Activities - Page 31: 15

Answer

$\lim\limits_{h \to 0}\frac{(3+h)^{2}-3^{2}}{h}=6$

Work Step by Step

Numerical Estimation: for $h=-0.1$: $\frac{(3-0.1)^{2}-3^{2}}{-0.1}\approx5.9$ for $h=-0.01$: $\frac{(3-0.01)^{2}-3^{2}}{-0.01}\approx5.99$ for $h=-0.001$: $\frac{(3-0.001)^{2}-3^{2}}{-0.001}\approx5.999$ for $h=-0.0001$: $\frac{(3-0.0001)^{2}-3^{2}}{-0.0001}\approx5.9999$ $\lim\limits_{h \to 0^{-}}\frac{(3+h)^{2}-3^{2}}{h}\approx6$ Numerical Estimation: for $h=0.1$: $\frac{(3+0.1)^{2}-3^{2}}{0.1}\approx6.1$ for $h=0.01$: $\frac{(3+0.01)^{2}-3^{2}}{0.01}\approx6.01$ for $h=0.001$: $\frac{(3+0.001)^{2}-3^{2}}{0.001}\approx6.001$ for $h=0.0001$: $\frac{(3+0.0001)^{2}-3^{2}}{0.0001}\approx6.0001$ $\lim\limits_{h \to 0^{+}}\frac{(3+h)^{2}-3^{2}}{h}\approx6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.