Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.3 Activities - Page 31: 36

Answer

(a) 0 (b) 0 (c) 0 (d) $f$ is continuous at $x=2$

Work Step by Step

Given $$ f(x)=\left\{\begin{array}{ll}{2^{x}-4} & {\text { when } x<2} \\ {x^{2}-4} & {\text { when } x \geq 2}\end{array}\right. $$ (a) Since \begin{align*} \lim _{x \rightarrow2^{-}} f(x)&=\lim _{x \rightarrow2^{-}}(2^x-4)\\ &=\lim _{x \rightarrow2^{-}}(4-4)\\ &=0 \end{align*} (b) Since \begin{align*} \lim _{x \rightarrow2^{+}} f(x)&=\lim _{x \rightarrow2^{+}} (x^2-4)\\ &=\lim _{x \rightarrow2^{+}} (4-4)\\ &=0 \end{align*} (c) $f(2)= (2^2-4)=0$ (d) Since $$\lim _{x \rightarrow2^{+}} f(x)=\lim _{x \rightarrow2^{-}} f(x)=f(2)=0$$ Then $f$ is continuous at $x=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.