Answer
a. $f^{-1}(x) = x/2$
b.
$f(f^{-1}(x)) = 2(x/2)$
$f(f^{-1}(x)) = x$
$f^{-1}(f(x)) = 2x/2$
$f^{-1}(f(x)) = x$
Work Step by Step
a.
To find the inverse of a function switch $f(x)$ with $x$ and replace $f(x)$ with $f^{-1}(x)$.
$f(x) = 2x$
$x = 2f(x)$
$x = 2f^{-1}(x)$
$x/2 = f^{-1}(x)$
$f^{-1}(x) = x/2$
b.
$f(f^{-1}(x)) = 2(x/2)$
$f(f^{-1}(x)) = x$
$f^{-1}(f(x)) = 2x/2$
$f^{-1}(f(x)) = x$