Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.3 Inverse, Exponential, and Logarithmic Functions - 1.3 Exercises - Page 36: 38

Answer

$${f^{ - 1}}\left( x \right) = - 2 - \sqrt {1 - x} ,{\text{ with }}x \leqslant - 2$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = - {x^2} - 4x - 3,{\text{ }}x \leqslant - 2 \cr & y = - {x^2} - 4x - 3 \cr & {\text{Completing the square}} \cr & y = - \left( {{x^2} + 4x + 3} \right) \cr & y = - \left( {{x^2} + 4x + 4 - 1} \right) \cr & y = - \left[ {{{\left( {x + 2} \right)}^2} - 1} \right] \cr & y = 1 - {\left( {x + 2} \right)^2} \cr & {\text{Interchange }}x{\text{ and }}y \cr & x = 1 - {\left( {y + 2} \right)^2} \cr & {\text{Solve for }}y \cr & x - 1 = - {\left( {y + 2} \right)^2} \cr & {\left( {y + 2} \right)^2} = 1 - x \cr & y + 2 = \pm \sqrt {1 - x} \cr & {\text{With }}x \leqslant - 2,{\text{ so}} \cr & y + 2 = - \sqrt {1 - x} \cr & y = - 2 - \sqrt {1 - x} \cr & {\text{Then}}{\text{,}} \cr & {f^{ - 1}}\left( x \right) = - 2 - \sqrt {1 - x} ,{\text{ with }}x \leqslant - 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.