Answer
$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=4$
Work Step by Step
$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}$
Quotient:
because $ \lim\limits_{x \to 1}{h(x)} = 2\ne0$
$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=\frac{\lim\limits_{x \to 1}{f(x)}}{\lim\limits_{x \to 1}{h(x)}}$
We know that $ \lim\limits_{x \to 1}{f(x)} = 8$
$\lim\limits_{x \to 1}{\frac{f(x)}{h(x)}}=\frac{\lim\limits_{x \to 1}{f(x)}}{\lim\limits_{x \to 1}{h(x)}}=\frac{8}{2}=4$
So
$\lim\limits_{x \to 1}{(4f(x))}=4\lim\limits_{x \to 1}{f(x)} = 4\times8=32$