Answer
$p(0)=20$
Work Step by Step
Theorem 2.3.5. Quotient rule:
$\displaystyle \lim_{x\rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim_{x\rightarrow a}f(x)}{\lim_{x\rightarrow a}g(x)},$ provided lim $g(x)\neq 0$
---
$\displaystyle \lim_{x\rightarrow 0}\frac{p(x)}{q(x)}=\frac{\lim_{x\rightarrow 0}p(x)}{\lim_{x\rightarrow 0}q(x)}$
$10=\displaystyle \frac{\lim_{x\rightarrow 0}p(x)}{2}$
$20=\displaystyle \lim_{x\rightarrow 0}p(x)$
Since $p(x)$ is a polynomial, by Th.2.4,
$\displaystyle \lim_{x\rightarrow 0}p(x)=p(0)=20$