Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.3 Techniques for Computing Limits - 2.3 Exercises - Page 77: 34

Answer

$a.\quad 0$ $b.\quad 0$ $c.\quad 0$ $d.\quad 0$ $e.\quad 15$ $f.\quad $does not exist.

Work Step by Step

$a.\quad $ Approaching $x=-5$ from the left, $f(x)=0,$ and $\displaystyle \lim_{x\rightarrow-5^{-}}f(x)=0$ $b.\quad $ Approaching $x=-5$ from the right, $f(x)=\sqrt{25-x^{2}},$ and $\displaystyle \lim_{x\rightarrow-5^{+}}f(x)$=$\sqrt{25-(-5)^{2}}=0$ $c.\quad $ Both one sided limits exist, and they are equal $\Rightarrow \displaystyle \lim_{x\rightarrow-5}f(x)=0$ $d.\quad $ Approaching $x=5$ from the left, $f(x)=\sqrt{25-x^{2}}$ $\displaystyle \lim_{x\rightarrow 5^{-}}f(x)=\sqrt{25-5^{2}}=0$ $e.\quad $ Approaching $x=5$ from the right, $f(x)=3x$ $\displaystyle \lim_{x\rightarrow 5^{+}}f(x)=3(5)=15$ $f.\quad $ The one-sided limits exist, but they are not equal. $\displaystyle \lim_{x\rightarrow 5}f(x)$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.