Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.3 Techniques for Computing Limits - 2.3 Exercises - Page 77: 50

Answer

$$4a\sqrt a $$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to a} \frac{{{x^2} - {a^2}}}{{\sqrt x - \sqrt a }},\,\,\,\,a > 0 \cr & {\text{Try to evaluate the limit}} \cr & = \mathop {\lim }\limits_{x \to a} \frac{{{a^2} - {a^2}}}{{\sqrt a - \sqrt a }} = \frac{0}{0} \cr & {\text{Rationalizing the denominator}} \cr & = \mathop {\lim }\limits_{x \to a} \frac{{{x^2} - {a^2}}}{{\sqrt x - \sqrt a }} \times \frac{{\sqrt x + \sqrt a }}{{\sqrt x + \sqrt a }} \cr & = \mathop {\lim }\limits_{x \to a} \frac{{\left( {{x^2} - {a^2}} \right)\left( {\sqrt x + \sqrt a } \right)}}{{{{\left( {\sqrt x } \right)}^2} - {{\left( {\sqrt a } \right)}^2}}} \cr & {\text{Simplifying}} \cr & = \mathop {\lim }\limits_{x \to a} \frac{{\left( {x + a} \right)\left( {x - a} \right)\left( {\sqrt x + \sqrt a } \right)}}{{x - a}} \cr & = \mathop {\lim }\limits_{x \to a} \left( {x + a} \right)\left( {\sqrt x + \sqrt a } \right) \cr & {\text{Evaluating the limit}} \cr & = \left( {a + a} \right)\left( {\sqrt a + \sqrt a } \right) \cr & = 4a\sqrt a \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.