Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.3 Techniques for Computing Limits - 2.3 Exercises - Page 77: 49

Answer

$2\sqrt a$

Work Step by Step

We have to determine $L=\lim\limits_{x \to a}\dfrac{x-a}{\sqrt x-\sqrt a}$, where $a>0$. Factor the numerator using the identity: $x^2-y^2=(x-a)(x+a)$: $L=\lim\limits_{x \to a}\dfrac{(\sqrt x-\sqrt a)(\sqrt x+\sqrt a)}{\sqrt x-\sqrt a}$ Simplify: $L=\lim\limits_{x \to a} (\sqrt x+\sqrt a)$ Determine $L$: $L=\lim\limits_{x \to a} \sqrt x+\sqrt a=\sqrt a+\sqrt a=2\sqrt a$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.