Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.3 Techniques for Computing Limits - 2.3 Exercises - Page 78: 78

Answer

$\dfrac{3}{2}$

Work Step by Step

We have to determine $L=\lim\limits_{x \to 1} \dfrac{x-1}{\sqrt{4x+5}-3}$. Multiply both numerator and denominator by the conjugate of the denominator: $L=\lim\limits_{x \to 1} \dfrac{x-1}{\sqrt{4x+5}-3}\cdot\dfrac{\sqrt{4x+5}+3}{\sqrt{4x+5}+3}$ $=\lim\limits_{x \to 1} \dfrac{(x-1)(\sqrt{4x+5}+3)}{(\sqrt{4x+5})^2-3^2}$ $=\lim\limits_{x \to 1} \dfrac{(x-1)(\sqrt{4x+5}+3)}{4x+5-9}$ $=\lim\limits_{x \to 1} \dfrac{(x-1)(\sqrt{4x+5}+3)}{4x-4}$ $=\lim\limits_{x \to 1} \dfrac{(x-1)(\sqrt{4x+5}+3)}{4(x-1)}$ Simplify: $L=\lim\limits_{x \to 1} \dfrac{\sqrt{4x+5}+3}{4}$ Determine the limit: $L=\dfrac{\sqrt{4(1)+5}+3}{4}=\dfrac{\sqrt 9+3}{4}=\dfrac{6}{4}=\dfrac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.