Answer
$A=\frac{k^2*\sqrt 3}{4}$
Work Step by Step
Let $x$, $y$, $z$ be the sides of the equilateral triangle.
All vertices are 60 degrees.
Thus, we have the area of the triangle as $\frac{1}{2}base*height$:
$A = 0.5 * x * m$
Using trigonometry, we have:
$m = y * sin(60)$
Thus:
$x=y$ and $sin(60) = \frac{\sqrt 3}{2}$
Finally, we get:
$A=\frac{1}{2}*\frac{\sqrt 3}{2}*x^2 = \frac{x^2\sqrt 3}{4}$