Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 2 - Nonlinear Functions - 2.1 Properties of Functions - 2.1 Exercises - Page 55: 53

Answer

$$ f(x)=2x^{2}-4x-5 $$ (a) $$ \begin{split} f(x+h) & =2 x^{2}+4 h x+2 h^{2}-4 x-4 h-5 \end{split} $$ (b) $$ \begin{split} f(x+h)-f(x) = 4 h x+2 h^{2}-4h \end{split} $$ (c) $$ \begin{split} \frac{f(x+h)-f(x)}{h} = 4 x+2 h-4 \end{split} $$

Work Step by Step

$$ f(x)=2x^{2}-4x-5 $$ (a) $$ \begin{split} f(x+h) & =2(x+h)^{2}-4(x+h)-5 \\ &=2\left(x^{2}+2 h x+h^{2}\right)-4 x-4 h-5 \\ &=2 x^{2}+4 h x+2 h^{2}-4 x-4 h-5 \end{split} $$ (b) $$ \begin{split} f(x+h)-f(x) & = 2 x^{2}+4 h x+2 h^{2}-4 x-4 h-5 -\left(2 x^{2}-4 x-5\right) \\ & = 2 x^{2}+4 h x+2 h^{2}-4 x-4 h-5 -2 x^{2}+4 x+5 \\ & = 4 h x+2 h^{2}-4 h \end{split} $$ (c) $$ \begin{split} \frac{f(x+h)-f(x)}{h} & = \frac{4 h x+2 h^{2}-4 h}{h} \\ & = \frac{h(4 x+2 h-4)}{h} \\ & = 4 x+2 h-4 \end{split} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.