Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 2 - Nonlinear Functions - 2.1 Properties of Functions - 2.1 Exercises - Page 55: 55

Answer

$$ f(x) =\frac{1}{x} $$ (a) $$ f(x+h) =\frac{1}{x+h} $$ (b) $$ \begin{aligned} f(x+h)-f(x) =\frac{-h}{x(x+h)} \end{aligned} $$ (c) $$ \begin{aligned} \frac{f(x+h)}{h} =\frac{-1}{x(x+h)} \end{aligned} $$

Work Step by Step

$$ f(x) =\frac{1}{x} $$ (a) $$ f(x+h) =\frac{1}{x+h} $$ (b) $$ \begin{aligned} f(x+h)-f(x) &=\frac{1}{x+h}-\frac{1}{x} \\ &=\left(\frac{x}{x}\right) \frac{1}{x+h}-\frac{1}{x}\left(\frac{x+h}{x+h}\right) \\ &=\frac{x-(x+h)}{x(x+h)} \\ &=\frac{-h}{x(x+h)} \end{aligned} $$ (c) $$ \begin{aligned} \frac{f(x+h)}{h} &=\frac{1}{h}\left[\frac{-h}{x(x+h)}\right] \\ &=\frac{-1}{x(x+h)} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.