Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 58: 70

Answer

a. See the table, $2.000$ b. See the graph, $2.0$ c. $2$

Work Step by Step

a. From the table, $\lim\limits_{x \to 3}\frac{x^2-2x-3}{x^2-4x+3}\approx 2.000$ b. From the graph, $\lim\limits_{x \to 3}\frac{x^2-2x-3}{x^2-4x+3}\approx 2.0$ c. $\lim\limits_{x \to 3}\frac{x^2-2x-3}{x^2-4x+3}=\lim\limits_{x \to 3}\frac{(x-3)(x+1)}{(x-3)(x-1)}=\lim\limits_{x \to 3}\frac{x+1}{x-1}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.