Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 58: 72

Answer

a. See the table, $-1.000$ b. See the graph, $-1.0$ c. $-1$

Work Step by Step

a. From the table, $\lim\limits_{x \to -2}\frac{x^2+3x+2}{2-|x|}\approx -1.000$ b. From the graph, $\lim\limits_{x \to -2}\frac{x^2+3x+2}{2-|x|}\approx -1.0$ c. $\lim\limits_{x \to -2}\frac{x^2+3x+2}{2-|x|}=\lim\limits_{x \to -2}\frac{(x+1)(x+2)}{2+x}=\lim\limits_{x \to -2}(x+1)=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.