Answer
$\mathrm{Even}.$
Work Step by Step
$\mathrm{Function\:Parity\:Definition:} $
$\mathrm{Even\:Function:}\:\: $ A function is even if $\ h(-t)=h(t)\ $ for all $\ x\in \mathbb{R}. $
$\mathrm{Odd\:Function:}\:\: $ A function is odd if $\ h(-t)=-h(t)\ $ for all $\ x\in \mathbb{R}. $
$h(t)=|t^3|$
$h(-t)=|(-t)^3|$
$h(-t)=|-t^3|$
By applying the absolute rule $\ |-a|\:=\:|a|\:\ $, we have:
$h(-t)=|t^3|$
Now,
$-h(t)=-|t^3|$
Since,
$h(-t)= h(t)\mathrm{,\:therefore\:}|t^3|\mathrm{\:is\:an\:even\:function}$
$h(-t)\ne -h(t)\mathrm{,\:therefore\:}|t^3|\mathrm{\:is\:not\:an\:odd\:function}$