University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.1 - Functions and Their Graphs - Exercises - Page 12: 58

Answer

$\mathrm{Even}.$

Work Step by Step

$\mathrm{Function\:Parity\:Definition:} $ $\mathrm{Even\:Function:}\:\: $ A function is even if $\ h(-t)=h(t)\ $ for all $\ x\in \mathbb{R}. $ $\mathrm{Odd\:Function:}\:\: $ A function is odd if $\ h(-t)=-h(t)\ $ for all $\ x\in \mathbb{R}. $ $h(t)=2|t|+1$ $h(-t)=2|(-t)|+1$ By applying the absolute rule $\ |-a|\:=\:|a|\:\ $, we have: $h(-t)=2|t|+1$ Now, $-h(t)=-(2|t|+1)$ $-h(t)=-2|t|-1$ Since, $h(-t) = h(t)\mathrm{,\:therefore\:}2|t|+1\mathrm{\:is\:an\:even\:function}$ $h(-t)\ne -h(t)\mathrm{,\:therefore\:}2|t|+1\mathrm{\:is\:not\:an\:odd\:function}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.