University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.3 - Trigonometric Functions - Exercises - Page 28: 55

Answer

$$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ - Start with the right side first. - Use the identity: $\tan\theta=\frac{\sin\theta}{\cos\theta}$ to replace tangent functions. - Simplify. - Then use the addition formulas and simplify again.

Work Step by Step

Prove the identity: $$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ We start with the right side first: $$\frac{\tan A+\tan B}{1-\tan A\tan B}$$ - Recall the identity: $\tan\theta=\frac{\sin\theta}{\cos\theta}$ $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A}\times\frac{\sin B}{\cos B}}$$ $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{\frac{\sin A\cos B+\cos A\sin B}{\cos A\cos B}}{1-\frac{\sin A\sin B}{\cos A\cos B}}$$ $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{\frac{\sin A\cos B+\cos A\sin B}{\cos A\cos B}}{\frac{\cos A\cos B-\sin A\sin B}{\cos A\cos B}}$$ $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{\sin A\cos B+\cos A\sin B}{\cos A\cos B-\sin A\sin B}$$ - Here, recall the addition formulas: $$\sin(A+B)=\sin A\cos B+\cos A\sin B$$ $$\cos(A+B)=\cos A\cos B-\sin A\sin B$$ Therefore, $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\frac{\sin(A+B)}{\cos(A+B)}$$ $$\frac{\tan A+\tan B}{1-\tan A\tan B}=\tan(A+B)$$ The given identity has been proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.