University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.3 - Trigonometric Functions - Exercises - Page 28: 56

Answer

$$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$

Work Step by Step

Derive a formula for $\tan(A-B)$ - First, use the identity: $\tan\theta=\frac{\sin\theta}{\cos\theta}$ $$\tan(A-B)=\frac{\sin(A-B)}{\cos(A-B)}$$ - Apply the addition formulas: $$\tan(A-B)=\frac{\sin A\cos B-\cos A\sin B}{\cos A\cos B+\sin A\sin B}$$ - Divide both the numerator and denominator by $\cos A\cos B$: $$\tan(A-B)=\frac{\frac{\sin A\cos B-\cos A\sin B}{\cos A\cos B}}{\frac{\cos A\cos B+\sin A\sin B}{\cos A\cos B}}$$ $$\tan(A-B)=\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{1+\frac{\sin A\sin B}{\cos A\cos B}}$$ - Now we can replace $\frac{\sin A}{\cos A}$ with $\tan A$ and $\frac{\sin B}{\cos B}$ with $\tan B$. $$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$ We have finished deriving a formula for $\tan(A-B)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.