Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 1 - Introduction - 1.3 Classification of Differential Equations - Problems - Page 25: 13

Answer

The given function is the solution of differential equation.

Work Step by Step

STEP 1 Differentiate the given function with respect to $t$. $$\begin{aligned}y' &= \left( { - \sin t} \right)\ln \cos t + \left( {\cos t} \right)\left( {\frac{{ - \sin t}}{{\cos t}}} \right) + \sin t + t\cos t\\ &= - \sin t\ln \left( {\cos t} \right) - \sin t + \sin t + t\cos t\\ &= - \sin t\ln \left( {\cos t} \right) + t\cos t\end{aligned}$$ STEP 2 Differentiate again with respect to $t$. $$\begin{aligned}y'' &= - \left[ {\cos t\ln \left( {\cos t} \right) + \sin t\left( {\frac{{ - \sin t}}{{\cos t}}} \right)} \right] + \cos t - t\sin t\\ &= - \cos t\ln \left( {\cos t} \right) + \frac{{{{\sin }^2}t}}{{\cos t}} + \cos t - t\sin t\\ &= - \cos t\ln \left( {\cos t} \right) + \frac{{1 - {{\cos }^2}t}}{{\cos t}} + \cos t - t\sin t\\ &= - \cos t\ln \left( {\cos t} \right) + \sec t - \cos t + \cos t - t\sin t\\ &= - \cos t\ln \left( {\cos t} \right) + \sec t - t\sin t\end{aligned}$$ STEP 3 Substitute the value of $y''$ into the given differential equation. $$\begin{aligned} - \left( {\cos t} \right)\ln \cos t + \sec t - t\sin t + \left( {\cos t} \right)\ln \cos t + t\sin t &\stackrel{?}{=} \sec t\\\sec t &= \sec t\end{aligned}$$ Therefore, the given function is the solution of differential equation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.