Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 1 - Vectors - 1.1 The Geometry and Algebra of Vectors - Exercises 1.1 - Page 17: 53

Answer

$X=2$

Work Step by Step

The elements of $\;\mathbb{Z}_{5}\;$ are 0,1,2,3,4 So, if there is a solution for this equation, then x is one of these numbers. $If \;\;x=0\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2.(0)+3=2 \; {\color{Red}\rightarrow } \;\; 0+3= 2\;\;{\color{Red} \Rightarrow }\;\;3\neq 2\\ so \;\;0 \;is \;not \;solution\\\\ If \;x=1\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;2.(1)+3=2 \; {\color{Red}\rightarrow } \;\; 2+3= 2\;\;{\color{Red} \Rightarrow }\;\;0\neq 2\\ so\; 1\; is\; not\;solution.\\\\ If\;x=2\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;2.(2)+3=2 \; {\color{Red}\rightarrow } \;\; 4+3= 2\;\;{\color{Red} \Rightarrow }\;\;2= 2\\ so\; 2\; is\;SOLUTION\\\\ If \;x=3\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;2.(3)+3=2 \; {\color{Red}\rightarrow } \;\; 1+3= 2\;\;{\color{Red} \Rightarrow }\;\;4\neq 2\\ so\; 3\; is\; not\; solution\\\\ If\; x=4\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2.(4)+3=2 \; {\color{Red}\rightarrow } \;\; 3+3= 2\;\;{\color{Red} \Rightarrow }\;\;1\neq 2\\ so\; 4 \;is\; not\; solution\\\\$ $X=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.