Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 2 - Functions and Their Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 59: 114

Answer

Only $\text{(a) }h(x)=2x$ has the given property.

Work Step by Step

Check each function if the property applies: a) $h(x)=2x$ $h(a+b)=2(a+b)=2a+2b=h(a)+h(b)$ $h(a+b)=h(a)+h(b)$ Therefore the function $h(x)=2x$ has the property for any real numbers $a$ and $b$ b) $g(x)=x^2$ $g(a+b)=(a+b)^2=a^2+2ab+b^2$ $g(a)+g(b) = a^2+b^2 $ $g(a+b)\ne g(a)+g(b)$ Therefore the function $g(x)=x^2$ does not have the property for any real numbers $a$ and $b$ c) $F(x)=5x-2$ $F(a+b)=5(a+b)-2=5a+5b-2$ $F(a)+F(b) = 5a-2+5b-2 =5a+5b-4 $ $F(a+b) \ne F(a)+F(b)$ Therefore the function $F(x)=5x-2$ does not have the property for any real numbers $a$ and $b$ d) $G(x)= \frac{1}{x}$ $G(a+b) = \frac{1}{a+b} $ $G(a)+G(b) = \frac{1}{a}+\frac{1}{b} $ $G(a+b) \ne G(a)+G(b) $ Therefore the function $G(x)= \frac{1}{x}$ does not have the property for any real numbers $a$ and $b$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.