Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Mid-Chapter Check Point - Page 71: 35

Answer

$\displaystyle \frac{(1-x)^{2}}{x^{3/2}}$

Work Step by Step

$x^{-\frac{1}{2}}=x^{-\frac{3}{2}+1}=x\cdot x^{-\frac{3}{2}}$, $x^{\frac{1}{2}}=x^{-\frac{3}{2}+\frac{4}{2}}=x^{2}\cdot x^{-\frac{3}{2}}$ So, we factor out $x^{-3/2}$ $= x^{-3/2}(1-2x+x^{2})$ the parentheses hold a square of a difference, $ (a -b)^{2}=a^{2}-2ab+b^{2}$. $=x^{-3/2}\cdot(1-x)^{2}\qquad $... apply $a^{-n}=\displaystyle \frac{1}{a^{n}}$ = $\displaystyle \frac{(1-x)^{2}}{x^{3/2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.