Answer
$3\sqrt[3]{2}$
Work Step by Step
RECALL:
For any real numbers $a$ and $b$,
$\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{ab}.$
Use the rule above to obtain
$\sqrt[3]{9(6)}
\\=\sqrt{54}.$
Factor the radicand so that one factor is a perfect cube to obtain
$\sqrt[3]{27(2)}
\\=\sqrt[3]{3^3(2)}.$
Simplify to obtain
$3\sqrt[3]{2}.$