An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.4 Conditional Probability - Questions - Page 37: 10

Answer

$P((A\cap B)|{{(A\cup B)}^{C}})=0$

Work Step by Step

Suppose events A and B are such that, $P(A\cap B)=0.1$ $P{{(A\cup B)}^{C}}=0.3$ $P(A)=0.2$ By definition of conditional probability, $P((A\cap B)|{{(A\cup B)}^{C}})=\frac{P((A\cap B)\cap {{(A\cup B)}^{C}})}{P({{(A\cup B)}^{C}})}$ Therefore, \[(A\cap B)\cap {{(A\cup B)}^{C}}=\varnothing =0\] $\begin{align} & P((A\cap B)|{{(A\cup B)}^{C}})=\frac{P((A\cap B)\cap {{(A\cup B)}^{C}})}{P({{(A\cup B)}^{C}})} \\ & P((A\cap B)|{{(A\cup B)}^{C}})=\frac{0}{0.3} \\ & P((A\cap B)|{{(A\cup B)}^{C}})=0 \\ \end{align}$ Hence, $P((A\cap B)|{{(A\cup B)}^{C}})=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.