An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.4 Conditional Probability - Questions - Page 37: 4

Answer

\[P(E|(A\cup B))=0.75\]

Work Step by Step

Let A and B be two events such that \[\begin{align} & P{{(A\cup B)}^{C}}=0.6 \\ & P(A\cup B)=1-P{{(A\cup B)}^{C}} \\ & P(A\cup B)=1-0.6 \\ & P(A\cup B)=0.4 \\ \end{align}\] \[P(A\cap B)=0.1\] Event E is the event that exactly one occurs. The portion of A, included in E is \[A\cap {{B}^{C}}\]. Similarly, the portion of B included in E is \[B\cap {{A}^{C}}\] It follows that E can be written as a union: \[E=(A\cap {{B}^{C}})\cup (B\cap {{A}^{C}})\] \[\begin{align} & P(E)=P(A\cap {{B}^{C}})+P(B\cap {{A}^{C}}) \\ & P(E)=P(A\cup B)-P(A\cap B) \\ & P(E)=0.4-0.1 \\ & P(E)=0.3 \\ \end{align}\] \[\begin{align} & P(E|(A\cup B))=\frac{P(E\cap (A\cup B))}{P(A\cup B)} \\ & P(E|(A\cup B))=\frac{P((A\cap {{B}^{C}})\cup (B\cap {{A}^{C}})\cap (A\cup B))}{P(A\cup B)} \\ & P(E|(A\cup B))=\frac{P((A\cap {{B}^{C}})\cup (B\cap {{A}^{C}}))}{P(A\cup B)} \\ & P(E|(A\cup B))=\frac{P(E)}{P(A\cup B)} \\ & P(E|(A\cup B))=\frac{0.3}{0.4} \\ & P(E|(A\cup B))=0.75 \\ \end{align}\] Therefore \[P(E|(A\cup B))=0.75\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.