An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.4 Conditional Probability - Questions - Page 37: 6

Answer

\[P(A)=\frac{2}{3}\] \[P(B)=\frac{1}{3}\]

Work Step by Step

Given, \[P(A|B)=0.6\] \[\text{P(At least one of the events occurs)}=P(A\cup B)=0.8\]\[\text{P(Exactly one of the events occurs)}=P(A)+P(B)=0.6\] \[\begin{align} & P(A\cup B)=P(A)+P(B)-P(A\cap B) \\ & P(A\cap B)=P(A)+P(B)-P(A\cup B) \\ & P(A\cap B)=0.8-0.6 \\ & P(A\cap B)=0.2 \\ \end{align}\] \[\begin{align} & P(A|B)=\frac{P(A\cap B)}{P(B)} \\ & 0.6=\frac{0.2}{P(B)} \\ & P(B)=\frac{1}{3} \\ \end{align}\] \[\begin{align} & P(A\cup B)=P(A)+P(B)-P(A\cap B) \\ & 0.8=P(A)+\frac{1}{3}-0.2 \\ & P(A)=\frac{2}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.