An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.4 Conditional Probability - Questions - Page 37: 2

Answer

$P(A\cap B)=1$

Work Step by Step

$P(A)=0.2$ $P(B)=0.4$ $P(A|B)+P(B|A)=0.75$ By the definition of conditional probability, $P(A|B)=\frac{P(A\cap B)}{P(B)}$ And \[P(B|A)=\frac{P(A\cap B)}{P(A)}\] Consider, \[\begin{align} & 0.75=P(A|B)+P(B|A) \\ & 0.75=\frac{P(A\cap B)}{P(B)}+\frac{P(A\cap B)}{P(A)} \\ & 0.75=P(A\cap B)\left( \frac{1}{P(B)}+\frac{1}{P(A)} \right) \\ & 0.75=P(A\cap B)\left( \frac{1}{0.4}+\frac{1}{0.2} \right) \\ & 0.75=(0.75)P(A\cap B) \\ & P(A\cap B)=1 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.