Answer
$\cos$ 28$^{\circ}$ $\lt$ $\sin $28$^{\circ}$ is false.
Work Step by Step
$\cos$ 28 < $\sin$ 28
We must first get the inequality in terms of $\cos$
$\sin$ $A$ = $\cos$ (90$^{\circ}$ - $A$)
Therefore:
$\sin$ 28 = $\cos$(90$^{\circ}$ - 28$^{\circ}$)
$\sin$ 28 = $\cos$ 62$^{\circ}$
The inequality could be rewritten: $\cos$ 28 < $\cos$ 62
From 0$^{\circ}$ to 90$^{\circ}$, as the angle increases, the $cosine$ of the angle decreases.
Therefore: $\cos$ 28$^{\circ}$ $\lt$ $\cos$ 62$^{\circ}$ is false.
Therefore: $\cos$ 28$^{\circ}$ $\lt$ $\sin $28$^{\circ}$ is false.