Answer
$Adjacent$ = $2\sqrt2$
$Opposite$ = 2$\sqrt2$
Work Step by Step
Hypotenuse = 4
We must solve for the other sides.
$\sin$ 45$^{\circ}$ = $\frac{Opposite}{Hypotenuse}$
$\sin$ 45$^{\circ}$ = $\frac{Opposite}{4}$
$\frac{\sqrt2}{2}$ = $\frac{Opposite}{4}$
4($\frac{\sqrt2}{2}$) = $Opposite$
2$\sqrt2$ = $Opposite$
$\tan$ 45$^{\circ}$ = $\frac{Opposite}{Adjacent}$
$\tan$ 45$^{\circ}$ = $\frac{2\sqrt2}{Adjacent}$
1 = $\frac{2\sqrt2}{Adjacent}$
$Adjacent$ = $2\sqrt2$