Answer
True
Work Step by Step
$\sin$$^{2}$ 45$^{\circ}$ + $\cos$$^{2}$ 45$^{\circ}$ = 1
$\sin$ 45$^{\circ}$ = $\frac{\sqrt2}{2}$
$\cos$ 45$^{\circ}$ = $\frac{\sqrt2}{2}$
$\sin$$^{2}$ 45$^{\circ}$ = ($\frac{\sqrt2}{2}$)$^{2}$
$\sin$$^{2}$ 45$^{\circ}$ = ($\frac{2}{4}$)
$\cos$$^{2}$ 45$^{\circ}$ = ($\frac{\sqrt2}{2}$)$^{2}$
$\cos$$^{2}$ 45$^{\circ}$ = ($\frac{2}{4}$)
($\frac{2}{4}$) + ($\frac{2}{4}$) = 1
Thus:
1 = 1
Therefore, $\sin$$^{2}$ 45$^{\circ}$ + $\cos$$^{2}$ 45$^{\circ}$ = 1 is a true statement.